首页> 外文OA文献 >Mouse Movement and Probabilistic Graphical Models Based E-Learning Activity Recognition Improvement Possibilistic Model
【2h】

Mouse Movement and Probabilistic Graphical Models Based E-Learning Activity Recognition Improvement Possibilistic Model

机译:基于E-Learning的鼠标移动和概率图模型   活动识别改进可能性模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Automatically recognizing the e-learning activities is an important task forimproving the online learning process. Probabilistic graphical models such ashidden Markov models and conditional random fields have been successfully usedin order to identify a Web users activity. For such models, the sequences ofobservation are crucial for training and inference processes. Despite theefficiency of these probabilistic graphical models in segmenting and labelingstochastic sequences, their performance is adversely affected by the imperfectquality of data used for the construction of sequences of observation. In thispaper, a formalism of the possibilistic theory will be used in order to proposea new approach for observation sequences preparation. The eminent contributionof our approach is to evaluate the effect of possibilistic reasoning during thegeneration of observation sequences on the effectiveness of hidden Markovmodels and conditional random fields models. Using a dataset containing 51 realmanipulations related to three types of learners tasks, the preliminaryexperiments demonstrate that the sequences of observation obtained based onpossibilistic reasoning significantly improve the performance of hidden Marvovmodels and conditional random fields models in the automatic recognition of thee-learning activities.
机译:自动识别电子学习活动是改善在线学习过程的重要任务。诸如ashidden Markov模型和条件随机字段之类的概率图形模型已成功用于识别Web用户活动。对于这种模型,观察序列对于训练和推理过程至关重要。尽管这些概率图形模型在分割和标记随机序列中效率很高,但其性能却受到用于构建观测序列的数据不完美质量的不利影响。在本文中,将使用可能性理论的形式主义来提出一种新的观测序列准备方法。我们的方法的显着贡献是评估观察序列生成过程中可能推理对隐马尔可夫模型和条件随机场模型的有效性的影响。使用包含与三种类型的学习者任务相关的51种真实操作的数据集,初步实验表明,基于可能性推理获得的观察序列显着提高了隐式Marvov模型和条件随机场模型在自动识别学习活动中的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号